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Abstract In mathematical chemistry and computational biology, eigenvalues of dis-
tance matrices are also used as descriptors for determining the degree of similarity
between different chemical structures or biological sequences. Since observed struc-
tures can vary in size, the spectra of corresponding distance matrices can be of dif-
ferent size, which makes the comparison of such structures difficult. In this paper we
introduce a mathematical theory needed to support novel graphical (qualitative and
visual) and numerical (quantitative and computational) representation of biological
sequences. As the main result, we derive a formula for the rank of the Hadamard
power of an Euclidean distance matrix.
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1 Introduction

In applications of graph theory to chemistry and biology, often one considers objects of
different size, such as molecules having different number of atoms or proteins or DNA
of different length. One is interested in numerical characterizations of such objects
that can offer an estimate of the degree of similarity between them. If such objects
are represented by matrices one faces the problem of comparing matrices of different
order. In such situation most of the invariants of such matrices [8,9], as a rule, will
be size-dependent, which may cause bias for the calculated similarity/dissimilarity
magnitudes. Hence, one has both, the conceptual and the computational difficulties,
which need to be resolved if one is to obtain reliable results free of biased preferences
for objects of the same size.

One way to proceed in such situations is, after selecting a set of invariants, to
normalize them with respect to the size of the object considered. For example, in the
case of graphs, if one selects the leading eigenvalues of several of matrices of graphs
considered as object descriptors, e.g., the the leading eigenvalues of adjacency matrix,
the leading eigenvalues of the distance matrix, the leading eigenvalue of the distance
matrix having only the maximal elements in each row and columns [11], and the
leading eigenvalue of the common vertex matrix [10] and divides them by 1√

n
, where

n is the number of vertices, one obtains values of the same order of magnitude. But
it has been known in mathematics for some time [1,2,13] that matrices of squared
distance between points in planar case (not on a sphere) regardless of the matrix size,
have only four non-zero eigenvalues. Hence, if one is to use matrix of squared distances
for objects of different size one would automatically arrive at vectors of the same size
representing objects which could be of variable sizes.

Leading eigenvalues of several matrices have been of interest in chemistry because
of their interpretations in structural concepts. Thus Lovaz and Pelikan [6] have inter-
preted the leading eigenvalue of the adjacency matrix as an index of molecular branch-
ing. Later Randić et al. [5] introduced a matrix with elements based on path counts,
the leading eigenvalue of which appeared even better descriptor of molecular branch-
ing. In another publication Randić et al. [3] have interpreted the leading eigenvalue
of the D/D matrix as an index that gives numerical measure of the degree of bend-
ing of a unbranched chain structures. On the other hand in early 1930’s Hückel [4]
introduced a simplified model of interaction of π -electrons in benzenoid hydrocar-
bons, which allowed benzenoid hydrocarbons to be represented by adjacency matrix
of molecular graphs. This model has lead to the interpretation of the eigenvalues of
the adjacency matrix as π -electron orbital energies in the so called Hückel Molecu-
lar Orbital (HMO) theory of quantum chemistry. More recently, Šali et al. [12] have
outlined how the eigenvalues of weighted adjacency matrix associated with amino
acid contacts for conformations of proteins embedded on 3D Cartesian grid of cubes
allowed calculation of the total energy of such conformations.

As we have seen, the adjacency matrix and the distances between vertices have
been of considerable interest in chemistry. An Euclidean distance matrix or shorter
EDM is a matrix D ∈ R

m×m with components

di j = ∥
∥xi − x j

∥
∥2
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for some points x1, . . . , xm ∈ R
d .

The formula for the rank of an EDM is well known [2, pp. 385–485]: if the points
x1, . . . , xm ∈ R

d don’t lie on a common sphere then

rank D = d + 2

otherwise

rank D = d + 1.

In this paper we extend the results to the n-th Hadamard power of D.

2 Preliminaries

The Hadamard product of matrices A, B ∈ R
m×n , denoted by A ◦ B ∈ R

m×n is the
entry-wise product

A ◦ B =
⎡

⎢
⎣

a11b11 . . . a1nb1n
...

. . .
...

am1bm1 . . . amnbmn

⎤

⎥
⎦ ∈ R

m×n .

The space R
m×n is commutative unital algebra for the Hadamard product. The unit

element is the matrix Emn ∈ R
m×n with all elements equal to 1. We also define the

k-th Hadamard power as the repeated Hadamard product

A(0) = Emn,

A(k) = A ◦ A ◦ . . . ◦ A
︸ ︷︷ ︸

k

, k > 0

In general, the Hadamard product doesn’t mix well with the ordinary matrix product.
However, if L ∈ R

m×m and R ∈ R
n×n are diagonal, then the two products commute

[7]

L AR ◦ B = L(A ◦ B)R.

For the purposes of this paper we define the Kronecker column product of matrices
A = [ai j ]i j ∈ R

m×n and B = [

b1 b2 . . . bn
] ∈ R

m′×n as a block matrix

A ⊗c B =
⎡

⎢
⎣

a11b1 . . . a1n bn
...

. . .
...

an1b1 . . . ann bn

⎤

⎥
⎦ ∈ R

mm′×n,
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where bi denotes i-th column of B.1

Kronecker column product is bilinear and associative, but not commutative. The
neutral element for Kronecker column product on the set of all real matrices with n
columns is the matrix E1n ∈ R

1×n , a row of all ones.
We also define Kronecker column power

A⊗c0 = E1n ∈ R
1×n,

A⊗ck = A ⊗c A ⊗c . . . ⊗c A
︸ ︷︷ ︸

k

∈ R
mk×n, k > 0.

The reason we will need Kronecker column product is the following observation that
connects it to the Hadamard product.

Proposition 1 For any matrices A ∈ R
m×r , B ∈ R

n×r , C ∈ R
m×r ′

, D ∈ R
n×r ′

,
the following equalities hold

(AT B) ◦ (CT D) = (A ⊗c C)T (B ⊗c D) (1)

(AT B)(n) = (A⊗cn)T (B⊗cn) (2)

Proof The (i, j)-th matrix entry on the left side is

(

(AT B) ◦ (CT D)
)

i j =
(

r
∑

k=1

aki bk j

)⎛

⎝

r ′
∑

l=1

cli dl j

⎞

⎠

and on the right side

(

(A ⊗c C)T (B ⊗c D)
)

i j =
r
∑

k=1

aki cT
i bk j d j =

r
∑

k=1

aki bk j

( r ′
∑

l=1

cli dl j

)

.

The two are obviously equal. Formula (2) follows by induction on the number of
factors. ��

One consequence of Proposition 1 is a simple proof of the well known Schur
Theorem:

Theorem (Schur) If A, B ∈ R
n×n are positive semidefinite, then A ◦ B is positive

semidefinite.

1 We call it this way because of the similarity to Kronecker product, which is defined for matrices A ∈ R
m×n

and B ∈ R
m′×n′

as a block matrix by the following formula

A ⊗ B =
⎡

⎢
⎣

a11 B . . . a1n B
.
.
.

. . .
.
.
.

an1 B . . . ann B

⎤

⎥
⎦ ∈ R

mm′×nn′
.
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Proof If A and B are positive semidefinite, there exist matrices X and Y , such that
A = X T X and B = Y T Y (e.g. by Cholesky decomposition). By above proposition
A ◦ B = (X ⊗c Y )T (X ⊗c Y ), which is positive semidefinite. ��
Proposition 2 For any matrices A, B ∈ R

n×n, im (A + B) ⊆ im A + im B. If in
addition any of the following two conditions holds

(a) A and B are both positive semidefinite,
(b) A and B are normal and im A ∩ im B = 0,

then im (A + B) = im A + im B.

Proof It can be found in any linear algebra book ��
We will denote the space of all polynomials with real coefficients on R

d by PRd and
the space of all polynomials of degree at most n by Pn

Rd . The space of all homogeneous

polynomials of degree n will be denoted by Hn
Rd . When the dimension d is known

from the context, we will sometimes shorten the notation to P, Pn or Hn .
The spaces Pn and Hn are finite-dimensional real vector spaces. The dimension of

Hn is
(n+d−1

d−1

)

, the number of combinations with repetition of size n for d elements
(since this is the number of different monomials of degree n). The space Pn is the
direct sum of H0, . . . , Hn , hence its dimension is

∑n
k=0

(k+d−1
d

) = (n+d
d

)

.

Lemma 1 Let X = [

x1 x2 . . . xn
] ∈ R

d×n. Then

im (X⊗cn)T =
{[

p(x1) p(x2) . . . p(xm)
]T
∣
∣
∣ p ∈ Hn

Rd

}

Proof Let xi j be the j-th component of the vector xi . The i-th column of X⊗cn is
x⊗cn

i . Its components are all products of the form xi j1 xi j2 . . . xi jn . Combining repeated

factors, these are all products of the form xk1
i1 xk2

i2 . . . xkd
id = xk

i where k = [k j ] j=1...d ≥
0 and |k| = k1 + k2 + . . . kd = n. These are exactly all the monomials of degree n in
xi (please note that every mixed monomial appears several times).

For any y ∈ R
dn

,
(

(X⊗cn)T a
)

i = (x⊗cn
i )T y. This is a linear combination of mono-

mials of degree n in xi , hence it equals p(xi ) for some p ∈ Hn (which depends only
on y, not on i). It’s obvious that for every p a corresponding y exists. ��

For polynomial p ∈ PRd and matrix X = [

x1 x2 . . . xm
] ∈ R

d×m we define

evX (p) = [

p(x1) p(x2) . . . p(xm)
]T

.

(The transposition is there to turn the result into a vector in R
m .) The map evX :

PRd → R
m is linear. As usual we define image of a subspace P ⊆ PRd

evX (P) = {evX (p) | p ∈ P} .

With this notation, the above proposition can be restated simply

im (X⊗cn)T = evX (Hn
Rd ).
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For any space of polynomials P ≤ PRd , the kernel of restriction evX |P consists of
all polynomials from P that are simultaneously zero on all columns x1, . . . , xm . In
particular, if P contains no such polynomial, then dim evX (P) = dim P .

3 The spherical case

The case of spherical EDM seems to be simpler than the generic one, that’s why we
will consider it first.

Theorem 1 Let D be an Euclidean distance matrix corresponding to the points
x1, . . . , xm ∈ S ⊆ R

d , where S is a (d − 1)-dimensional sphere with center c
and radius r . Define

S n
d :=

(
d + n − 1

d − 1

)

+
(

d + n − 2

d − 1

)

.

Then

rank D(n) ≤ S n
d ,

where equality holds iff there is no nonzero polynomial p on R
d with all terms of

degree either n or n − 1 such that p
( 1

r (xi − c)
) = 0 for all i = 1, . . . , m.

Proof Since the EDM D is invariant to common translations of x1, . . . , xm and since
the rank of a matrix is invariant to scaling, we may assume without loss of generality
that all xi lie on the sphere S(0, 1), i.e. ‖xi‖2 = 1 for all i . The only change is that
the condition p

( 1
r (xi − c)

) = 0 reduces to the simpler condition p(xi ) = 0.
The i j-th element of matrix D can be calculated as follows

di j = ∥
∥xi − x j

∥
∥2 = ‖xi‖2 − 2xT

i x j + ∥
∥x j

∥
∥2 = 2(1 − xT

i x j ).

Defining X = [

x1 x2 . . . xm
] ∈ R

d×m and E = Emm ∈ R
m×m , the above can be

written in matrix form

D = 2(E − X T X).

By Binomial theorem and since E is the unit for Hadamard product

D(n) =
n
∑

k=0

(−1)k
(

n

k

)

(X T X)(k).

Finally, by Proposition 1

D(n) =
n
∑

k=0

(−1)k
(

n

k

)

(X⊗ck)T (X⊗ck)

=
∑

k even

(
n

k

)

(X⊗ck)T (X⊗ck)

︸ ︷︷ ︸

D+

−
∑

k odd

(
n

k

)

(X⊗ck)T (X⊗ck)

︸ ︷︷ ︸

D−

.
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According to Lemma 1

im (X⊗ck)T (X⊗ck) = im (X⊗ck)T = evX (Hk
Rd ).

Since both D+ and D− are sums of positive semidefinite terms, we can replace image
of sums with sum of images by Proposition 2

im D+ =
∑

k even

evX (Hk
Rd ) and im D− =

∑

k odd

evX (Hk
Rd )

For any column xi of X, ‖xi‖2 = 1. For any p ∈ Hk
Rd it follows that

p(xi ) = ‖xi‖2 p(xi ) =: q(xi ).

Hence evX (p) = evX (q) and since q ∈ Hk+2
Rd it follows that evX (Hk

Rd ) ⊆ evX (Hk+2
Rd ).

The above sums therefore collapse and we obtain simply

im D+ = evX (Hn
Rd ) and im D− = evX (Hn−1

Rd )

in case n is even, otherwise n and n − 1 are exchanged. Now from

im D(n) = im (D+ − D−) ⊆ im D+ + im D−

and

im D+ + im D− = evX (Hn
Rd ) + evX (Hn−1

Rd )

= evX (Hn
Rd + Hn−1

Rd )

it is easy to see the inequality

rank D(n) ≤ dim(Hn
Rd + Hn−1

Rd ) = S n
d .

To check when equality holds we proceed as follows. First, assume that there exists
a nonzero polynomial p with all terms having degree n or n − 1 that annihilates all
xi . In other words, such polynomial is an element of the space Hn

Rd + Hn−1
Rd ⊆ PRd .

Since evX (p) = 0, the kernel of evX : Hn
Rd + Hn−1

Rd → R
m is nontrivial. Therefore

rank D(n) ≤ dim
(

evX (Hn
Rd + Hn−1

Rd )
)

< dim(Hn
Rd + Hn−1

Rd ) = S n
d .

On the other hand, if there is no polynomial in Hn
Rd + Hn−1

Rd that annihilates X ,

then im D+ ∩ im D− = evX (Hn
Rd ) ∩ evX (Hn−1

Rd ) = 0; otherwise there would be

123
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nonzero polynomials p1 ∈ Hn
Rd and p2 ∈ Hn−1

Rd such that evX (p1) = evX (p2), hence
evX (p1 − p2) = 0. From Proposition 2 it follows that

im (D+ − D−) = im D+ + im D− = evX (Hn
Rd + Hn−1

Rd ).

And since kernel of evX on Hn
Rd + Hn−1

Rd is trivial, the dimension of its image equals
S n

d . ��
Remark Using the theorem for spherical case, we can obtain the correct upper bound
for the rank of EDM in generic case. Take EDM D corresponding to the points
x1, . . . , xm ∈ R

d . Embed R
d in R

d+1 as R
d × {0} and let x′

i = (xi , 0) be the
images of points under this embedding (which is isometric and therefore preserves
the EDM). Consider a series of d-spheres {Sk}k∈N in R

d+1 where Sk = S
(

(0d , k), k
)

.

These spheres all touch the plane R
d × {0} at point 0. Let x[k]

i be the nearest point to

xi on the sphere Sk and let Dk be the EDM corresponding to the points x[k]
1 , . . . , x[k]

m .

Because the radii of Sk increase towards infinity, points x[k]
i converge towards xi for

all i , hence Dk converges towards D. Because the rank is subcontinuous

rank D(n) ≤ lim
k→∞ rank D(n)

k = S n
d+1 =

(
d + n

d

)

+
(

d + n − 1

d

)

.

Unfortunately, the conditions for equality cannot be obtained in this way. For this
reason we consider it separately in the next section.

4 The generic case

Theorem 2 Let D be an Euclidean distance matrix corresponding to the points
x1, . . . , xm ∈ R

d . Define

R n
d :=

(
d + n

d

)

+
(

d + n − 1

d

)

.

Then

rank D(n) ≤ R n
d ,

the inequality is strict if there exist nonzero polynomials p ∈ Pn
Rd and q ∈ Pn−1

Rd such
that

p(xi ) + ‖xi‖2n q

(
xi

‖xi‖2

)

= 0

for all i = 1, . . . , m.

Proof We will assume that xi �= i for al i . If some of the points are zero, translate
points a bit so that all are nonzero (however, the condition for equality must then be
considered for translated points).
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The i j-th element of the matrix D is expressed as

di j = ∥
∥xi − x j

∥
∥2 = ‖xi‖2 − 2xT

i x j + ∥
∥x j

∥
∥2

.

Defining X = [

x1 x2 . . . xm
] ∈ R

d×m, E = Emm ∈ R
m×m , and

N =

⎡

⎢
⎢
⎢
⎣

‖x1‖2

‖x2‖2

. . .

‖xn‖2

⎤

⎥
⎥
⎥
⎦

∈ R
m×m

one can easily check that the above can be written in matrix form as

D = N E − 2X T X + E N .

To calculate the power we have to use binomial theorem for three terms

D(n) =
∑

r+s+t=n
r,s,t≥0

(−1)s2s n!
r !s!t ! (N E)(r) ◦ (X T X)(s) ◦ (E N )(t)

Because N is diagonal matrix, the interesting part reduces to

(N E)(r) ◦ (X T X)(s) ◦ (E N )(t) = (Nr E) ◦ (X T X)(s) ◦ (E N t )

= Nr (X T X)(s)N t

Which by Proposition 1 is further equal to

Nr (X T X)(s)N t = Nr (X⊗cs)T (X⊗cs)N t .

We introduce new index k = 2r+s and from this and r+s+t = n express t = r+n−k
(Explanation for the apparently arbitrary choice: k is the degree of the corresponding
polynomial term in the image of D(n))

D(n) =
2n
∑

k=0

∑

2r+s=k
r+s≤n
r,s≥0

(−1)s 2sn!
r !s!t ! Nr (X⊗cs)T (X⊗cs)Nr+n−k .

Because k and s differ by even number, we can replace (−1)s with equal factor (−1)k .
Factoring out everything that doesn’t depend on r or s we produce

D(n) =
2n
∑

k=0

(−1)k Dk N n−k

where

Dk =
∑

2r+s=k
r+s≤n
r,s≥0

2sn!
r !s!t ! Nr (X⊗cs)T (X⊗cs)Nr .
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Since Dk is a sum of positive definite terms, its image is

im Dk =
∑

2r+s=k
r+s≤n
r,s≥0

im (X⊗cs Nr )T . (3)

Consider a subspace of homogeneous polynomials

‖x‖2r Hs
Rd =

{

(x2
1 + · · · + x2

d )r p(x)

∣
∣
∣ p ∈ Hs

Rd

}

≤ H2r+s
Rd .

Due to Lemma 1, it is elementary to see

im (X⊗cs Nr )T = evX
(‖x‖2r Hs

Rd

)

.

It is also easy to check that ‖x‖2r Hs
Rd ⊆ ‖x‖2(r−1) Hs+2

Rd and therefore

im (X⊗cs Nr )T ⊆ im (X⊗cs+2 Nr−1)T .

This means that the sum in (3) reduces to the subspace term with the largest s. However,
we must be careful that k may go up to 2n while r and s only go up to n. Thus (3)
simplifies to

im Dk =
{

im (X⊗ck N 0) = evX
(

Hk
Rd

)

k ≤ n,

im (X⊗cl N n−l = evX
(‖x‖2(n−l) Hl

Rd

)

k > n.

In the second case we introduced l = 2n − k, which ranges from 0 to n − 1. The
value comes from the fact that 2n − k is the maximum value of s given the constraints
k > n, 2r + s = k, r + s ≤ n and r, s ≥ 0.

Since im (Dk N n−k) = im Dk we see

im D(n) ⊆
2n
∑

k=0

im Dk = evX

(
n
∑

k=0

Hk
Rd +

n−1
∑

l=0

‖x‖2(n−l) Hl
Rd

)

(4)

Obviously, dim
(‖x‖2(n−l) Hl

Rd

) = dim Hl
Rd . Therefore

rank D(n) ≤
n
∑

k=0

dim Hk
Rd +

n−1
∑

l=0

dim Hl
Rd (5)

and since

n
∑

k=0

dim Hk
Rd =

n
∑

k=0

(
k + d − 1

d − 1

)

=
(

n + d

d

)

,

we finally get rank D(n) ≤ (n+d
d

)+ (n−1+d
d

) = R n
d .
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When do we get strict inequality? We need to find the case when the kernel of evX

restricted to the space

V :=
n
∑

k=0

Hk
Rd +

n−1
∑

l=0

‖x‖2(n−l) Hl
Rd

is nontrivial. The first sum in this expression is just Pn
Rd , the space of all polynomials

of degree at most n. How about the second part?
Every p ∈ ‖x‖2(n−l) Hl

Rd has the form p(x) = ‖x‖2(n−l) q(x) for some q ∈ Hl
Rd .

Since q is homogeneous with degree l,

p(x) = ‖x‖2n

‖x‖2l
q(x) = ‖x‖2n q

(
x

‖x‖2

)

Now if p ∈ ∑n−1
l=0 ‖x‖2(n−l) Hl

Rd there exist ql ∈ Hl
Rd for l = 1, . . . , n − 1

p(x) =
n−1
∑

l=0

‖x‖2n ql

(
x

‖x‖2

)

= ‖x‖2n q

(
x

‖x‖2

)

where q = ∑
l = 0n−1ql ∈ Pn−1

Rd is an arbitrary polynomial in Pn−1
Rd . In this way

we obtain necessity of the condition in the statement of the theorem: if there exist
p ∈ Pn

Rd and q ∈ Pn−1
Rd such that

p(xi ) + q

(
xi

‖xi‖2

)

= 0

for all i , then evX has nontrivial kernel on V . This means that there is a strict inequality
in (5); consequently rank D(n) < R n

d . ��
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3. B. Horvat, T. Pisanski, M. Randić, Some graphs are more strongly-isospectral than others. Match-

Commun. Math. Comput. Chem. 63(3), 737–750 (2010)
4. E. Hückel, Quantentheoretische Beitrage zum Benzolproblem. I. Die Elektronenkonfiguration des

Benzols und verwandeter Verbindungen. Zeit. F. Phys. 70, 204–286 (1931)
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